+86-28-82633987sales@biopurify.com
Batch Search
Alternate Text
Home > Literature List > Inhibitory Effect and Mechanism of Action of Quercetin and Quercetin Diels-Alder anti-Dimer on Erastin-Induced Ferroptosis in Bone Marrow-Derived Mesenchymal Stem Cells

Inhibitory Effect and Mechanism of Action of Quercetin and Quercetin Diels-Alder anti-Dimer on Erastin-Induced Ferroptosis in Bone Marrow-Derived Mesenchymal Stem Cells

Journal name:Antioxidants
Literature No.:
Literature Url: http://scholar.google.com/scholar_url?url=https://www.mdpi.com/2076-3921/9/3/205/pdf&hl=zh-CN&sa=X&d=4849373116637268669&scisig=AAGBfm0bm-qpgOxEoDb_uw-UJ5YGpHLYDg&nossl=1&oi=scholaralrt&hist=P1l9U8wAAAAJ:6061410958341296950:AAGBfm1SMj-qIFykR7xxSgbekTZuDQdibA
Date publication:2 March 2020
Abstract: In this study, the anti-ferroptosis effects of catecholic flavonol quercetin and its metabolite quercetin Diels-Alder anti-dimer (QDAD) were studied using an erastin-treated bone marrow-derived mesenchymal stem cell (bmMSCs) model. Quercetin exhibited higher anti-ferroptosis levels than QDAD, as indicated by 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (C11-BODIPY), 20 ,70 -dichlorodihydrofluoroscein diacetate (H2DCFDA), lactate dehydrogenase (LDH) release, cell counting kit-8 (CCK-8), and flow cytometric assays. To understand the possible pathways involved, the reaction product of quercetin with the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH• ) was measured using ultra-performance liquid-chromatography coupled with electrospray-ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC-ESI-Q-TOF-MS). Quercetin was found to produce the same clusters of molecular ion peaks and fragments as standard QDAD. Furthermore, the antioxidant effects of quercetin and QDAD were compared by determining their 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide radical-scavenging, Cu2+-reducing, Fe3+-reducing, lipid peroxidation-scavenging, and DPPH• -scavenging activities. Quercetin consistently showed lower IC50 values than QDAD. These findings indicate that quercetin and QDAD can protect bmMSCs from erastin-induced ferroptosis, possibly through the antioxidant pathway. The antioxidant pathway can convert quercetin into QDAD—an inferior ferroptosis-inhibitor and antioxidant. The weakening has highlighted a rule for predicting the relative anti-ferroptosis and antioxidant effects of catecholic flavonols and their Diels-Alder dimer metabolites. 

… Biosciences Co. (Guangzhou, China). Quercetin (C15H10O7, CAS number
117-39-5, MW 302.2, purity 98%, Supplementary File 3 Figure S3.1–3.3) was obtained from Biopurify Phytochemicals, Ltd. (Chengdu, China). QDAD … 
Related Products