+86-28-82633987sales@biopurify.com
Batch Search
Alternate Text
Home > Literature List > Apoptotic, MDA, and FGF2 Level of Quercitrin Treatment on Hypoxic-induced EA.hy926 Cell Line

Apoptotic, MDA, and FGF2 Level of Quercitrin Treatment on Hypoxic-induced EA.hy926 Cell Line

Journal name:SID
Literature No.:
Literature Url: https://www.jrpsjournal.com/
Date publication:June 27, 2021
Background: Preeclampsia (PE) is pregnancy disorder that is characterized by hypertension, proteinuria, and an enhanced maternal systemic inflammatory response. PE affects 5% to 10% of all pregnancies and remains a leading factor of fetal and maternal morbidity and mortality. The existence of oxygen deprivation is involved in PE. Inflammation is a requisite to the pathogenesis of PE. Quercitrin belongs to the flavonoid group that is known to have antioxidant and anti-inflammatory activity. Aims: This study aims at determining the potential of quercitrin to reduce the percentage of apoptosis, levels of lipid peroxidase (MDA), and FGF2 in the human endothelial cell (EA.hy926) line that is induced by hypoxia (2% O2 ) as a PE model. Materials and Methods: Five treatments were used in this study (negative control, vehicle control, hypoxia control, quercitrin 25 µg/mL, and quercitrin 6.25 µg/mL) to determine the live, necrotic, and apoptotic cells percentage; MDA and FGF2 levels toward hypoxia-induced endothelial cells as a PE model. ELISA method was used to measure the MDA and FGF2 levels. Live, necrotic, and apoptotic cells were measured by using the flow cytometry method. Result: Quercitrin was capable of decreasing the MDA and FGF2 levels compared with hypoxia control; of increasing live cells percentage; and of decreasing apoptotic and necrotic cells percentage compared with hypoxia control cells. Conclusion: This study showed that quercitrin possesses antioxidant and anti-inflammatory properties that can decrease the percentage of the apoptotic cells, suppress MDA levels and FGF2 levels, and increase live cells percentage in hypoxia-induced endothelial cells as a PE model.
Related Products