+86-28-82633987sales@biopurify.com
Batch Search
Alternate Text
Home > Literature List > Protective mechanisms of 10-gingerol against myocardial ischemia may involve activation of JAK2/STAT3 pathway and regulation of Ca2+ homeostasis

Protective mechanisms of 10-gingerol against myocardial ischemia may involve activation of JAK2/STAT3 pathway and regulation of Ca2+ homeostasis

Journal name:Biomedicine & Pharmacotherapy
Literature No.:
Literature Url: https://www.sciencedirect.com/science/article/pii/S0753332222004711
Date publication:July 2022
10-Gingerol (10-Gin), an active ingredient extracted from ginger, has been reported to have beneficial effects on the cardiovascular system. However, its protective effects on myocardial ischemia (MI) and the underlying cellular mechanisms are still unclear. To investigate the protection conferred by 10-Gin against MI injury and its potential mechanisms in cardiomyocytes via patch-clamp and molecular biology techniques. A rat MI model was established using the subcutaneous injection of isoproterenol (85 mg/kg) administered on two consecutive days. 10-Gin was pre-administered to rats for seven days to assess its cardio-protection. The patch-clamp and IonOptix Myocam detection techniques were used to investigated 10-Gin’s effects on L-type Ca2+ channels (LTCCs), Ca2+ transients and cell contractility in isolated rat cardiomyocytes. 10-Gin administration alleviated MI injury, improved cardiac function and myocardial histopathology, reduced myocardial infarct area, downregulated oxidative stress and Ca2+ levels, and decreased the expression of apoptotic factors. Importantly, 10-Gin led to an increase in phosphorylated Janus kinase 2 and signal transducer and activator of transcription 3 (JAK2 and STAT3, respectively) expressions. Furthermore, 10-Gin inhibited LTCCs in a concentration-dependent manner with a half-maximal inhibitory concentration of 75.96 μM. Moreover, 10-Gin administration inhibited Ca2+ transients and cell contractility. Our results suggest that 10-Gin exerts cardioprotective effects on MI in vivo and in vitro in connection with the inhibition of oxidative stress and apoptosis via activation of the JAK2/STAT3 signalling pathway, and regulation of Ca2+ homeostasis by LTCCs.
Related Products